前言
Kafka 作为一个消息系统,其中很大的一个用途就是作为业务上的解耦,而它实现的模式就是经典的生产者消费者模式。毫无疑问,就出现了producer、consumer。然后消息总得有地方存放啊,然后就有了具体的broker,那在broker上是如何进行组织和存放的,就出现了partition。对应的为保证消息不丢失,也就出现了消息备份组这样一个概念(ISR,in-sync replica)再加上消息的topic也就形成了,kafka的 topic-partition-message 的三级负载结构。到这里Kafka中比较核心的几个概念就都有了,下面开始详细介绍。
producer
producer也就是生产者,是kafka中消息的产生方,产生消息并提交给kafka集群完成消息的持久化,这个过程中主要涉及ProducerRecord对象的构建、分区选择、元数据的填充、ProducerRecord对象的序列化、进入消息缓冲池、完成消息的发送、接受broker的响应。 具体的流程是这样的:
1、确定topic信息 2、确定value信息 3、然后进行消息的序列化处理 4、由分区选择器确定对应的分区信息 5、将消息写入消息缓冲区 6、完成消息请求的发送 7、完成消息响应的处理
ProducerRecord:
ProducerRecord 对象比较核心的信息有:topic、partition(这个信息是根据分区选择器来确定的)、key、value、timestamp
PS:时间戳信息是默认当前时间的,但是用户可以指定时间戳信息,但是不推荐这么做,broker中大体有这么几种log也就是消息存放文件普通日志文件,时间索引文件,普通索引文件。如果强行指定时间戳很有可能导致时间索引失效。
元数据:
元数据信息主要包括offset消息在分区日志中的位移信息、timestamp、topic/partition topic及对应的分区信息、checksum 消息对应的CRC32码、serializedKeySize 序列化后的key的字节数、serializedValueSize 序列化后的Value的字节数
Partition:
分区选择器,默认是murmur2 对于key进行hash计算然后对于总分区数求模以此得到被发送的分区号,当然我们实现producer时可以自定义partition,或者指定特定分区。
serializer:
serializer是kafka实现的自己的序列化工具用于将消息对象序列化成字节序列,Kafka中提供了ByteArraySerializer、ByteBufferSerializer、BytesSerializer、Long(Double Integer String)Serializer等几种序列化方法,用户也可以使用自定义的或者第三方的序列化工具。只需要使用指定对应参数即可(切记Kafka中指定对应的工具类时都是使用权限定名称来做的)
序列化相关的参数有如下:
key.serializer
针对各个部分做序列化方式
key.deserializer key.serializer
对应解序列化方式
value.serializer
对value部分指定的序列化方式
value.deserializer value.serializer
对应解序列化方式
可以简单的理解为key要比value的应用范围广。
batch:
buffer.memory 指定producer待发送消息缓冲区的内存大小,默认32m,如果需要更改就使用这个参数进行修改。这里需要注意的是当producer端写消息的速度超过了专属IO线程发送消息的速度,并且缓冲区的消息数量超过buffer.memory指定的大小时,producer会抛出异常通知用户介入处理,这个缓冲区的大小需要根据实际场景来确定。
batch.size 指一个batch的大小,它直接决定了一个batch中存在的消息数量,这个直接与producer的吞吐量及延时等直接相关,因为所谓的micr-batch 是指原本应该串行一条条发送的消息更改为缓存一部分消息,等达到对应的消息规模时一次性发送,也不会像批处理规模那么大(主要为了平衡延时与性能,这个会有专门的篇章来介绍micr-batch)
linger.size
producer端会专门划出一部分内存用于待发送消息的缓存,batch.size决定了发送消息数量,同时间接决定了消息缓存时存在的延时。linger.size 就是针对这一点设计出来的,它决定了消息被投放进缓冲区时是否立马被发送,默认参数是0(立即发送),这个大多数情况下是合理的,但是会很大程度上拉低kafka的吞吐量。具体要根据实际的使用场景来确定了。
通信协议:
kafka 并没有使用现有的http协议等,而是在TCP 协议之上实现了自己的通信协议。单个client会创建多个socket链接与多个broker进行交互,Kafka 原生Java client使用类似于epoll的方式在单个连接上不停的轮训传数据,但是每个broker上只需要维护一个Scoket链接,保证了消息的请求的顺序处理,所以很清晰的可以看到在client端就需要我们自己去维护这个顺序了。
整体来说Kafka 中大约有三类连接:client与broker之间消息传输、controller 与所有broker之间的交互、client 获取元数据&rebalance的通信过程。
同其他协议类似,Kafka的通信协议的请求和响应也都是格式化的。由 固定长度初始类型(int8、int16、int32、int64)、可变长度类型(bytes、string)、数组。请求头由 api_key(int16,请求类型)、api_version(int16,请求版本号)、correlation_id(int32,与请求响应的关联号,这个字段就是给响应用的)、client_id(client id)
经常接触到的Kafka请求类型有:PRODUCE请求(生产消息请求)、FETCH请求(服务于消费消息,并不一定是clients向broker拉消息,也可能是follower副本向leader副本索要消息)、METADATA请求(获取指定topic的元数据信息:[topics]+allow_auto_topic_creation)
PS:这里有一点需要说明,clients与broker是单向兼容的,这个在生产环境中如果不注意是格外容易发生问题的。这个兼容性是指,高版本broker可以兼容低版本clients,但是低版本broker无法兼容高版本clients,所以说升级clients版本,尤其是对接新的consumer时一定要格外注意。这个问题主要针对非Java client的,对于Java client来说,会自动判断连接的broker端所支持的client请求的最高版本。
producer interceptor
拦截器是新版本才出现的一个特性,并且是非必须的,interceptor 核心的函数有onSend(在消息序列化计算分区之前就被调用)、onAcknowleagement(被应答前或者说在发送失败时,这个方法是运行在producer的I/O线程中的,所以说如果存在很多重逻辑的话会导致严重影响处理消息的速率)、close。通常是通过为clients定制一部分通用且简单的逻辑时才会使用的。
压缩算法
Kafka支持的压缩算法还是很可观的:GZIP、Snappy、LZ4,默认情况下不进行消息压缩,毕竟会消耗很大一部分cpu时间,导致send方法处理时间变慢。启动LZ4 进行消息压缩的producer的吞吐量是最高的。Kafka-producer-解析